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Fig. 1. The user interface of our proposed FLDA system, including: (a) parameter setting panel for adjusting parameters in LDA
model; (b) MDS/Heatmap view with thumbnails of pathline previews embedded; (c) pathline view for rendering pathlines in 3D space;
(d) feature view. Projection in (b) is rendered as a density map in pseudo color, with distribution of the selected topic highlighted. (d)
in the pixel-oriented style consists of two parts: the attribute-time view at the top and the topic-time view at the bottom. Each column
represents one time step, while each row denotes a topic or an attribute.

Abstract—In this paper, we present a novel feature extraction approach called FLDA for unsteady flow fields based on Latent Dirichlet
allocation (LDA) model. Analogous to topic modeling in text analysis, in our approach, pathlines and features in a given flow field are
defined as documents and words respectively. Flow topics are then extracted based on Latent Dirichlet allocation. Different from other
feature extraction methods, our approach clusters pathlines with probabilistic assignment , and aggregates features to meaningful
topics at the same time. We build a prototype system to support exploration of unsteady flow field with our proposed LDA-based
method. Interactive techniques are also developed to explore the extracted topics and to gain insight from the data. We conduct case
studies to demonstrate the effectiveness of our proposed approach.

Index Terms—Flow visualization, Topic model, Latent Dirichlet allocation (LDA)

1 INTRODUCTION

In recent years, there is an increasing demand on effective visualiza-
tion of multivariate unsteady flow field data, especially in areas such

• Fan Hong and Chufan Lai are with Key Laboratory of Machine Perception

(Ministry of Education), School of EECS, Peking University. E-mail:

{fan.hong,chufan.lai}@pku.edu.cn.

• Hanqi Guo and Xiaoru Yuan are with Key Laboratory of Machine

Perception (Ministry of Education), School of EECS, and Center for

Computational Science and Engineering, Peking University, E-mail:

{hanqi.guo,xiaoru.yuan}@pku.edu.cn.

• Enya Shen is with School of Computer Science, National University of

Defense Technology, Changsha, China, E-mail:

shenenya.nudt@gmail.com.

• Sikun Li is with School of Computer Science, National University of

Defense Technology, Changsha, China, E-mail: sikunli@126.com.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of

publication xx xxx 2014; date of current version xx xxx 2014.

For information on obtaining reprints of this article, please send

e-mail to: tvcg@computer.org.

as climate research, ocean research, air pollution research, etc. Visu-
alization and analysis for such data is quite difficult and challenging,
due to the complexity of the data and visualization tasks. In general,
such flow visualization involves exploring attribute space, geometry
space and advection simultaneously.

Flow field data has been long studied in visualization community
for years. Traditional flow visualizations including texture-based [30]
and geometry-based [36] methods seldom consider the associated at-
tribute information. They may also suffer from visual clutter problem
when dealing with 3D flow field.

Now more visualization methods are developed to detect, identify
and extract interesting features from the flow field. One genre is to
manually define features at first, after which the system will try to de-
tect corresponding features from flow field [28, 46, 39, 8]. Salzbrunn
et al. [39] has shown that any suitable set of pathline predicates can be
interpreted as features in unsteady flow structures. However, insight-
ful features are hard to define when scientists do not have enough prior
knowledge about the data, especially when multivariate information
involved. Another genre takes clusters as features. The flow field data
is first transformed to a space easier for exploration, then automatic
algorithm or manual exploration is conducted to identify and extract



clusters. Projection methods are more effective in revealing the intrin-
sic features of flow field data by mapping data to lower dimensions.
Daniels et al. [22] proposed to project samples of 2D flow into 2D
space to extract important spatial structures. Streamlines can also be
projected according to their geometry distances [38]. When it comes
to multivariate unsteady flow field, Lagrangian-based Attribute Space
Projection (LASP) proposed by Guo et al. [17] is capable of projecting
massive pathlines based on their distances in the attribute space. How-
ever, these methods often suffer from the gap between the data space
and feature space. The identified clusters lack semantic meaning to
help understand these intrinsic structures.

In this paper, we propose a novel unsteady flow analysis method
based on Latent Dirichlet allocation (LDA) model, named the Flow
LDA, or FLDA in short. LDA model is widely used in text analysis to
study topics from a large corpus of documents which are naturally de-
composed into words. In FLDA, we define pathlines as documents and
features as words respectively. After estimating the underlying model,
we obtain a list of topics which are fused from features defined, and
simultaneously pathlines are clustered into topics with probabilistic
assignment. The topics can serve as connectors between the collection
of pathlines and the features.

FLDA can be regarded as a mixture of the two types of feature ex-
traction methods mentioned before. On the one hand, features are de-
fined at first to describe expected facets of the flow behaviors. FLDA
model will identify features containing those facets, but in a way of
fused topics, rather than as separated features. On the other hand,
FLDA can be treated as a probabilistic clustering method. We are able
to obtain semantic implications of clusters from LDA-derived topics,
which reflect intrinsic patterns hidden in the flow field data. More-
over, the probabilistic assignment gives a consecutive measurement of
the pathline-topic relationship, which could provide more insights into
clusters.

Although LDA model has been successfully applied to many re-
search fields besides text analysis, including computer graphics, com-
puter vision [42, 9, 31] and even recently traffic trajectory analy-
sis [12], it has not been systematically tested for flow field visualiza-
tion. It is nontrivial to apply LDA model to flow field data. The key
problem is how to define features in FLDA, which is corresponding to
words in LDA model, and how to explain topics and their relationship
with pathlines and features. In the original LDA model for text anal-
ysis, words are naturally obtained from documents. When applied in
computer vision or computer graphics for segmentation, classification
or pattern recognition, spatial regions are usually used as words. How-
ever, in flow field analysis, it is not sufficient to consider only spatial
positions. Especially for multivariate unsteady flow field, we expect
to involve multivariate features. Therefore, we need to carefully de-
fine words in our FLDA model, in order to obtain a good description
of the expected facets. We have tackled the feature definition prob-
lem and apply the FLDA model for complexity flow visualization, as
a new approach to understand and explore complex flow fields. We
also developed a set of interactive techniques for better understanding
the extracted topicsand their relationship with features and pathlines.

The remainder of this paper is organized as follows. We describe
the background of FLDA model and flow field visualization and anal-
ysis techniques in Section 2. In Section 3, we introduce our method
on the basis of LDA model, and describe the pipeline of our prototype
system. We give more details about the parameter settings of FLDA
model, and visualization techniques in Section 4. Case studies are
shown in Section 5 to demonstrate the effectiveness of our method.
In Section 6, we compare the proposed FLDA method with other ap-
proaches. At last, we conclude this paper with a brief review and dis-
cuss about the future work.

2 BACKGROUND

Our work has mainly three relevant fields: multivariate flow field vi-
sualization, LDA analysis methods, and flow exploration methods. In
this section, we briefly review literature in these fields.

2.1 Multivariate Flow Field Visualization

Multivariate flow field visualization is a challenging task due to the
complexity of the data. Using linked multi-dimensional visualizations
for feature extraction and rendering is a major methodology to tackle
this problem.

One of the most popular multi-dimensional data visualization tools
is Parallel Coordinate Plot (PCP) [23]. PCP-based flow field visualiza-
tions had been proposed in recent years [2, 4, 47]. Akiba et al. [1, 2]
proposed a tri-space visualization combining time histogram, PCP and
the spatial rendering for identifying features in temporal, attribute and
spatial domain. Similarly, Blass et al. [4] used PCP for multivariate
analysis in a time-varying background, where features are spatially
rendered as isosurfaces. For multivariate particle data, Jones et al. [27]
deployed PCP to select particles for pathline generation.

Scatterplots coupled with dimension reduction techniques or de-
rived statistic information are also widely used. Chen et al. [11] pro-
posed a method to embed DTI fibers into 2D Multi-Dimensional Scal-
ing (MDS) based on their mutual mean distances, so as to alleviate the
clutter problems in 3D space. Guo et al. [18] proposed a seamless in-
tegration between PCP and MDS plots, which provides high efficient
feature extraction by avoiding context switching. Such approach is
further developed by Zhao et al. [47], combining Locally Linear Em-
bedding (LLE) with PCP for an easier edit on transfer functions. Hel-
mut proposed the SimVis system [15] that makes use of scatterplots
with linked brushes to select interesting features in particle simula-
tions. Jan̈icke et al. [25] transformed the attribute space into 2D point
clouds where special features could be distinguished without clutter or
obscurity. More recently, Maciejewski et al. [35] encoded attribute re-
lationships instead of projections in the scatterplot for better guidance
in 2D transfer function design. For vector field of flow data, dimension
projection techniques give more insight by embedding field lines into
lower dimension spaces. For streamline embedding, Hausdorff dis-
tances are used as the distance metric [38] between seed points so that
the projection plot reveals spatial similarity of corresponding stream-
lines. To further consider multivariate behavior of unsteady flow field,
LASP [17] extended the geometry space distance to attribute space
distance for traced pathlines. That method is capable of extracting
multivariate features in the Langragian perspective for unsteady flow
data. Facing a similar data complexity problem, we adopt the MDS
to exhibit the relationship of pathlines in the attribute space, which
provides a carrier to visualize flow topics from the multivariate facet.
For a better performance, we use the Pivot MDS [6] to reduce the
computational complexity.

Besides PCP and scatterplot, other approaches are also used to
show the relationships among variables. Sauber et al. [40] proposed
multifield-graphs, in which variables are hierarchically grouped for a
descendant correlation display in the spatial domain. Woodring and
Shen [44] used a spreadsheet and a tree map for showing the compari-
son relationship between attributes. Concerning data clustering in the
attribute space, Linsen et al. [33] also used the tree structure to present
the hierarchical structure, aligned with cluster contours shown in the
star coordinate context. From the information-theoretic aspect, Wang
et al. [41] adopted circular graph layout to present information trans-
fer between variables. Chen et al. [10] showed the static correlations
between samples extracted from the volume using scatterplot matrix.
Bruckner and Möller [7] split the simulation data into clusters, with a
star glyph to present the multivariate feature of each cluster.

2.2 Topic Model and LDA Analysis

Topic model is widely used in text analysis. Landauer et al. [29] pro-
posed the concept of Latent Semantic Analysis in 1988. Latent Seman-
tic Analysis add a latent semantic layer between documents and words.
Latent semantics are extracted from the relationship among words to
construct semantic space, where documents are then projected to ob-
tain a sparse representation. pLSI/pLSA [19, 20] introduced statistic
analysis and generative model based an LSA. pLSA solves synonyms
and polysemy problem, but suffers from overfitting. Blei et al. [5] pro-
posed the concept of topic model and related LDA model. LDA is a
multi-layer Beyasian model, including three layers, e.g. words, top-



ics, and documents. Every topic is a mixture of words, while every
document is a mixture of topics. By introducing Dirichlet distribution,
LDA model is able to avoid overfitting which pLSA suffers. Among
these two most popular topic models, pLSA is actually a special case
of LDA. After LDA model, lots of variations raise.

In text analysis, lots of visualization are proposed for the results
derived by LDA model. Termite [13] utilized a 2D table to represent
the distribution between keywords and topics, using size of circles to
indicate the probabilities. Documents can be projected to lower dimen-
sional space by considering not only the distances between words, but
also the distances between latent semantic topics [21, 24]. To visualize
the evolution of topics along time, TIARA [43] encoded the hotness of
topics using the width of rivers in ThemeRiver. TextFlow [14] further
used the metaphor of rivers to indicate the emerging, vanishing, merg-
ing and splitting events in topic models. LeadLine is also a river-like
visualization, but more emphasized on the bursting to topics hotness.
iVisClustering [32] not only provides various visualization techniques
for LDA model, but also enables users steering of LDA process. Be-
sides applications in text analysis field, LDA model has been adopted
in computer graphics and computer vision field [42, 9, 31] for various
purposes, such as segmentation, classification, pattern recognition, etc.
In visualization of traffic data, Chu et al. [12] use LDA model to dis-
cover hidden themes from trajectories data.

In this paper, we build a topic model for flow field data to describe
the relationship between pathlines and features by introducing a latent
layer. Our prototype system provides several visualizations for LDA
results. We focus more on revealing the insight of topics, since topics
in our method have richer meaning.

(b)

1.0

1.0

0.5

0.5

Pr2
Tc2

Pr1
Pr2

Tc2Tc2

Pr1

(b)

c2

Tc3Pr3

Tc3
Tc3 Tc1

Pr1

Pr3

Flow

Topic 1

Flow

Topic 2

(a)(a)(a)

riv
erstreamriver

river
bank

bank

stream

1.0

1.0

0.5

0.5

m
oney

bank

loan

money

bankbank

loan

Topic 1: Banking

Topic 2: River

Pathline1: Pr2 Tc2 Pr1 Tc2 Pr2 

Pr2 Tc2 Pr1

Pathline2: Pr2 Tc2 Tc1 Tc3 Pr1 

Pr3 Tc2 Pr2

Pathline3: Tc3 Tc1 Pr3 Tc1 Tc3 

Tc3 Pr3 Tc1

DOC1: money bank loan bank

money money bank loanmoney money bank loan

DOC2: money bank bank river

load stream bank moneyload stream bank money

DOC3: river bank stream bank

river river stream bank

Fig. 2. Illustration of (a) typical LDA model and (b) our flow LDA model.
Pathlines and features are defined to be equivalent to documents and
words in topic model respectively. Tc and Pr stands for features of tem-
perature and pressure respectively.

2.3 Exploration on Flow Field Data

Traditional flow visualization methods, such as texture-based [30] and
geometry-based [36] methods, usually involvelittle user interaction.
More recently, interactive feature extraction techniques have been de-
veloped to help users explore flow field. Parallel coordinates are often
used to visualize the scalar field in flow data, where users are able
to brush numerical ranges to extract features [1, 2, 4]. Alternative to
parallel coordinates, projection approaches are able to reveal inherent
structures from data. 2D scalar samples are projected into 2D space
to extract important spatial structures. Streamlines and pathlines can
also be embeded into lower-dimensional space advection information
based on the distances in geometry space [38] and attribute space [17].
Users are able to extract rich features from projection plots.

Recently, graph-based visualization is emerging for flow explo-
ration. TransGraph [16] is proposed to visualize information transi-
tion along time between blocks, where users can select different levels
of hierarchy. Ma et al. [34] proposed FlowGraph to explore the dual

relationships between streamlines and blocks with rich interaction and
query techniques. Jänicke et al. [26] extract local flow patterns as
nodes in graph, and their transitions as edges where users can track
features over time. There are some work representing the attribute
relationship of scalar field using graph-like form [40, 3].

In our work, based on a novel perspective, FLDA, we pro-
vide a pixel-wised feature view, together with preview-facilitated
MDS/Heatmap view to help explore flow field data.

3 OVERVIEW

In this work, we innovate a flow field analysis method which is based
on LDA model, and implement a prototype system to support LDA-
based exploration on flow field. In this section, we will first introduce
basics of LDA model and its usage in the topic analysis field. Then
we give our equivalent definition of LDA concepts in the flow field
scenario. At last, we describe the pipeline of our prototype system.

3.1 Basics of LDA Model

Latent Dirichlet allocation (LDA) was first proposed by Blei et al. [5]
to explain why documents are similar from the latent topic level in-
stead of the word level. We first introduce some basics of typical LDA
model. The symbols used in this paper are listed in Table 1.

D Number of documents.
K Number of topics.
V Vocabulary.

dj The jth document.
Nj Number of words in dj .

N
Total number of words in all documents,

Typical
∑D

j=1 Nj .

LDA wij The ith word in dj document.
zij Topic assignment for word wij .
θj Probability of topics in document dj .
φk Probability of words in topic k.
α Dirichlet prior for θ.
β Dirichlet prior for φ.

x
Facet of flow field,

Flow x ∈ {Speed,Attribute,Angle, . . .}.
LDA Fx Flow feature set defined on facet x.

Vf Vocabulary of flow features,
⋃

x
Fx.

Table 1. Symbols used in this paper.

The LDA model is typically used to analyze topics in the corpus of
documents. The underlying generative process is that any document
dj is modeled as a mixture of K topics, while any topic k is character-
ized by a multinomial distribution φk over vocabulary V . Among all
variables, only wij is observable, while others like zij , θj , and φk are
latent variables. LDA model generates observations of latent variables
using the following process:

1. For every document dj , draw a topic distribution θj from a
Dirichlet prior with parameter α, i.e. θj ∼ Dir(α), where
j ∈ {1, · · · , D}.

2. For every topic k, draw a word distribution φk from a Dirich-
let prior with parameter β, i.e. φk ∼ Dir(β), where k ∈
{1, · · · ,K}.

3. For word position i in jth document, where i ∈ {1, · · · , Nj},
and j ∈ {1, · · · , D}, choose a topic for this position zij =
k ∼ Multinomial(θj), and then choose a word from the cho-
sen topic wij ∼ Multinomial(φzij ).

After the generative process is defined, the total probability of the
model can be described as:

P (W,Z, θ,φ;α, β) =

K
∏

i=1

P (φi;β)
M
∏

j=1

P (θj ;α)
N
∏

t=1

P (Zj,t|θj)P (Wj,t|φZj,t
),



where W,Z, θ,φ dontes the vector version of wij , zij , θj , and φk re-
spectively. The model estimation process is to maximize the likelihood
function by Bayesian inference with parameters α and β. The original
model [5] uses variational inference method, while in our work, we
adopt an implementation using Gibbs sampling [37]. The time com-
plexity of one iteration is O(KDM), where M is the average length
of documents. It can be simplified to O(KN), where N donates the
total number of words in all documents.

The LDA model can be applied as a document clustering method.
The K topics can be treated as clusters, and the topic distribution θj
for the document dj denotes the probabilities of membership to every
cluster. A more careful approach is to treat θj as a lower-dimensional
feature vector for every document, and conduct another clustering rou-
tine, such as k-means. However, in FLDA model, we choose the for-
mer approach, because we think the topics and distributions act as
better connectors between the data space and feature space.

3.2 FLDA Model

To employ LDA model in flow field analysis, we need to define equiv-
alent LDA concepts at the very beginning (Figure 2). Without loss
of generality, we give our definition on pathline data, which could be
easily extended to other kinds of fieldlines. In our FLDA model, we
consider pathlines as the central subjects, which play a similar role as
documents do in the topic model. We then consider features as words,
with pathlines being bags of features, which is analogous to the con-
cept of documents being bags of words in topic model. For any facet
x of the flow field, such as geometric, multivariate or temporal facet,
we can define a feature set Fx to describe different behaviors of the
selected facet. For example, we can define features as blocks in spatial
domain to represent similar spatial behaviors, or as bins of the attribute
value to represent similar attribute behaviors, etc. In this way, any
pathlines sharing similar behaviors are considered to have common
features. All feature sets Fx can then be united to an overall feature
vocabulary Vf . In our prototype system, we provide a predefined vo-
cabulary containing feature sets of commonly concerned facets. Users
are free to choose a subset of predefined vocabulary or add their own
definitions to the existing vocabulary.

After defining the feature vocabulary Vf , we pick out features for
every pathline to make its feature bag. The FLDA method uses the fea-
ture bags as input to estimate the underlying topic model. As results,
topics, distribution of topics per pathline, and distribution of features
per topic are generated. Similar to the LDA model, the derived topic
can be treated as a mixture of features. Meanwhile, pathlines are as-
signed to topics with probabilities.

The generated topics are depicted from two aspects, the feature side
and the pathline side. On the one hand, in order to provide good se-
mantic explanations for topics, it is important to choose appropriate
definitions of features. Easy as it seems in static data, the problem
is tricky in the time-varying background. In our prototype system, we
prefer to define features as similar behaviors at a single timestep, rather

than over consecutive timesteps or the entire time span. In this way,
it is easier to decompose a topic along the time dimension to inspect
the evolution of corresponding behaviors. On the other hand, topics
can be treated as fuzzy clusters constructed by pathlines based on the
behaviors they shared. Pathlines convey rich multivariate information,
geometric information and temporal information, which makes it pos-
sible to extract topics from some facets and then explain them from
the others. While in text analysis, the documents only contain textual
information, thus the topics can only be extracted and explained from
the same aspect. From this point of view, topics in flow field are more
explainable than those in text analysis.

3.3 Features Definition

The input of LDA model is the bags of features, which is analogue to
the the bags of words in topic model. In topic model, documents can be
naturally decomposed into words. The order of words in one document
does not influence the results. However, a simple copy of the definition
doesn’t work in the flow field scenario. First of all, dividing pathlines
based on spatial location doesn’t make much sense, since they rarely
share the same sample points. Such a trivial definition will lead to
meaningless results. More importantly, the advection information of
pathlines will be lost if we do not involve the order of sample points
into the FLDA model.

In our approach, we define various kinds of features as words to
describe flow behaviors from different facets. The predefined feature
sets for every sample point on a pathline are listed below. All these
feature sets are assembled to a huge vocabulary Vf .

• Speed magnitude (FSpeed).

• Attribute value (FAttr).

• Turning angle (FAngle).

• Spatial positions (FBlock).

Words in topic models are always discrete, while features we de-
fined in FLDA are usually from continuous numerical ranges (or
spaces). We divide the whole range or space into several bins or re-
gions, each of which corresponds to one feature. At the same time,
we add temporal information to distinguish between similar behaviors
but appeared at different moments. Even similar bins or regions in one
facet but at different timesteps correspond different features, which is
a major difference from the word definition in topic model. In this
way, topics generated could be decomposed along time dimension to
give more useful explanation for unsteady flow field. There is a possi-
bility that feaures are defined as behaviors across several consecutive
timesteps. However, this type of features definitions will depend on
users’ priori knowledge on data.

Take the facet of speed magnitude for example, we can generate a
feature set as follows: At timestep t, the speed magnitude of all sample
points falls into an interval [at, bt]. We can draw a finite sequence on
the interval

at = xt,0 < xt,1 < xt,2 < · · · < xt,nt = bt,
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Fig. 3. Pipeline of our system. Pathlines are extracted from flow field in preprocess step. After users choose the feature sets, every pathline is
treated as a bag of features, which serves as the input of the LDA model. Topics, topic distributions per pathline, and feature distributions per topic
are generated by LDA model. Multiple interactive views are created to visualize the results.



which partitions the numerical range into nt equal-range subintervals.
Then we define a speed magnitude feature st,· corresponding to each
subinterval, and collect all features at timestep t, i.e.

st,i ≡ [xt,i, xt,i+1],where 0 ≤ i < nt, (1)

St = {st,0, · · · , st,nt−1}.

By collecting all speed magnitude features St at every timestep, we
obtain a feature set for speed magnitude facet,

FSpeed ≡ S =

T−1
⋃

t=0

St,where 0 ≤ t < T.

We can define other feature sets similarly. In this way, a feature vo-
cabulary is obtained based on the union of all predefined feature sets,

Vf = FSpeed ∪ FAttr ∪ FAngle ∪ FBlock ∪ · · ·

We can also decompose the feature sets and the feature vocabulary
along the time dimension:

Vf (t) = FSpeed(t) ∪ FAttr(t) ∪ FAngle(t) ∪ FBlock(t) ∪ · · · ,

where t donates one timestep.
The definition of feature vocabulary Vf is flexible. On the one hand,

users could select one or multiple feature sets to construct a new fea-
ture vocabulary to meet their requirements. On the other hand, simple
feature definitions are not useless in our approach. Even with simple
features, FLDA model could generate meaningful topics by mixing
features to describe complicated flow behaviors.

3.4 Pipeline

Based on FLDA model, we implement a prototype system to support
the visualization and exploration on multivariate flow field data (Fig-
ure 3).

In our preprocessing step, we first extract pathlines from an un-
steady flow field, together with multivariate information. Pathlines
are generated using adaptive Runge-Kunta method, and the resampled
with a fixed time interval. At the same time, we employ our previous
work, LASP [17], to project the multivariate pathlines into a 2D space
based on their distances in the attribute space along the advection, so
that instrinsic multivariate structures are revealed.

The FLDA model starts from desired feature definitions chosen by
users from the system presets. All features are generated from these
definitions according to the previous description. For every pathline,
the system then picks up those features whose corresponding behav-
iors are observed in it. After that, each pathline can be regarded as a
bag of features, which serves as the input of LDA model. The under-
lying latent topic model is then estimated, where topics, topic distri-
butions per pathline, and feature distributions per topic are generated.

In the visualization part, we create the MDS/Heatmap view and
the feature view to show the results. The MDS/Heatmap view gives
an overview of the topic distribution in the projection space, together
with thumbnail previews showing the spatial distribution of each topic.
The feature view visualizes temporal distributions of features for ev-
ery topic. Users are able to find out when and in which facets the
pathlines in the same topic resemble each other. Topic selection is
supported in both views. The MDS/Heatmap view can highlight path-
lines who have high degree of memberships in the selected topic. The
feature view then visualizes the temporal distribution of features for
every facet, where users are able to observe which facets of similar
behaviors are dominated in this topic, and when this happens. Apart
from the two views, we render those pathlines with high degree of
membership in the pathline view.

In the system, users are able to adjust the LDA parameters, includ-
ing feature vocabulary, the number of topic number, Dirichlet prior
α, β, the number of iterations, etc. Among them, feature definition
is significantly responsible for the results. Besides the several pre-
sets provided by the system, users can also extend the vocabulary by
adding their own definitions on demand.

4 SYSTEM DETAILS

We implement a prototype system which employs FLDA for multivari-
ate flow field analysis. We first introduce our system interface, where
users can explore the results of FLDA from various aspects. We then
give details on experiment under different parameter settings.

4.1 User Interface

The interface includes four parts: parameter setting panel, pathline
view, preview with MDS/Heatmap and feature view as shown in Fig-
ure 1.

4.1.1 Parameter Setting Panel

In the parameters setting panel (Figure 1(a)), users are able to choose
different feature sets to compose the feature vocabulary Vf and set
necessary parameters. Users then launch FLDA analysis. Results gen-
erated are visualized in the three views.

4.1.2 Pathline View

The pathline view (Figure 1(c)) is set to visualize the spatial distribu-
tion of pathlines which have a high degree of membership to a specific
topic. Interactions like rotating, zooming and panning are provided
to enable an elaborative observation from different viewports. By in-
specting the spatial shapes of pathlines, users can estimate the behavior
coherence within a topic, so as to evaluate the rationality of topics.

4.1.3 Preview with MDS/Heatmap

In this view, we mainly focus on the topic distribution per document
θ(·) generated by FLDA. The MDS/Heatmap view (Figure 1(b)) con-
sists of two parts, namely the MDS projection of the original pathlines
and the spatial previews of topics. This view mainly serves three pur-
poses:

1. Reveal the intrinsic multivariate structures of attribute space.

2. Provide an intuitive overview of all topics by embedding their
spatial distributions as previews.

3. Reveal the correlation of different topics by comparing the mul-
tivariate distributions of their members.

For the first purpose, we provide a LASP projection plot [17] to
present the distribution of pathlines. The distance of two pathlines
is defined in the attribute space with Lagrangian specification, which
is calculated by accumulating the differences of attribute values at all
corresponding sample positions of pathlines. Two rendering styles are

b

a

c

 Topic Highlighting 

Heatmap/MDS Switch

Fig. 4. Interactions supported in the MDS/Heatmap view. (a) The de-
fault MDS projection is rendered as a scatterplot. (b) When a topic is
selected, distribution of the data within this topic is highlighted using fo-
cus+context technique. (c) Users can switch the projection to a heatmap
style where the density information could be more clearly seen.
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Fig. 5. Visualization of FLDA results under different feature set definitions. (a) Feature sets of SPEED and Turning Angle; (b) Feature set of P only;
(c) Feature set of TC only.

provided: the traditional scatterplot style and the heatmap style (Fig-
ure 4(b)). Users are allowed to change the projection style, depending
on whether individual data samples or density of the distribution is
the major concern. In the heatmap style, users can adjust the color
mapping to emphasize areas with different densities, so as to recover
details that would be hidden with an improper color scale.

For the second purpose, we introduce previews in the projection
plot to indicate the spatial distributions of topics. Each preview con-
tains a small snapshot of the pathline rendering result of the corre-
sponding topic. Pathlines in previews are kept the same temporal and
spatial range as in pathline view. To avoid clutter in previews, only a
subset of pathlines are rendered in the preview. The number of the sub-
set comes from a power function of original number of pathlines in the
topic. For every topic k, the corresponding preview is anchored at its
central sample, which minimizes the distance to all samples weighted
by probability θj,k. A leader then emits from the anchor position to
its corresponding thumbnail. The previews are carefully arranged to
avoid overlaps, occlusions and line crossings, using a heuristic zone-
based labeling algorithm proposed by Wu et al. [45], which combines
genetic and greedy strategies to minimize the overall length of lines.
Users can select a topic by clicking on its preview, which results in
highlighting in the pathline view and the projection view.

For the last purpose, topic highlighting is introduced (Figure 4(b)).
In the scatterplot style, we adopt the focus+context strategy and high-
light those samples of high degree membership while fading out oth-
ers. The probability θj,k is considered as the degree of membership of
document dj to topic k. When in the heatmap style, we modulate the
density by the weights θj,k for every sample to emphasize distribution
of the chosen topic k (Figure 4(c)). By viewing the distribution of the
topic, users can see clearly how its members resemble each other in
the attribute space. By switching between focuses, users can learn the
differences between topics.

Providing spatial previews greatly enhances users’ comprehension
of the results. Firstly, embedding previews in the projection closely
relates the spatial and multivariate distributions of a topic without the
trouble to switch between contexts. Secondly, by viewing the snap-
shots before they drill down to details, users may gain an intuitive per-
ception about the spatial features of topics, which may cast a light on
the following exploration. At last, the small multiple strategy enables
users to compare different topics without switching between contexts.

4.1.4 Feature View

While the MDS/Heatmap view reveals correlations between pathlines
and topics θ(·,·) in the attribute space, the feature view (Figure 1(d))
visualizes the relationships between features and topics φ(·,·) in an
time-varying context. The feature view contains three parts: the topic
view, facet view for one selected topic, and time histogram for one
facet of one selected topic, all of which are of pixel-oriented style.
These three views enable a progressive exploration process for topic-
feature relationships.

In the topic view, each row shows the feature distribution φk for
every topic k, while each column indicates one timestep. The color
in every cell encodes the accumulated probability of all features at the
timestep t for the topic k, i.e.

P (t, k) ≡
∑

x

∑

w∈Fx(t)

φw,k.

Users can perform topic selection and time span selection in the topic
view. Topic selection is linked to the MDS/Heatmap view and pathline
view, which gives detailed information for the chosen topic. It will also
trigger the attribute view to refresh for the selected topic.

When a topic k is selected, the attribute view visualizes the distri-
bution φk for every facet x. Each row corresponds to one feature set
Fx, and each column still indicates one timestep. For feature set Fx,
each cell encodes the accumulated probability alone for this topic, i.e.

Pk(x, t) ≡
∑

w∈Fx(t)

φw,k.

By decomposing the φk from a whole feature vocabulary into several
feature sets, users are able to observe what kind of similar behaviors
aggregate more in this topic, and when this happens.

Since our features are defined based on discretization of value
range, there is a demand to investigate the change of the features’
corresponding values in one topic. We further create a pop-up time
histogram to visualize the change of values when a topic k and a fea-
ture set Fx is selected. Every column is a histogram at corresponding
timestep t which comes directly from the probability of features de-
fined in Equation 1.

With the three parts in the feature view, θ(·,·) is visualized at differ-
ent aggregation levels, which provides fruitful explanation for topics.
It is helpful for understanding the data on the topic-word level, and
in the temporal context. On the one hand, the topic view provides
a good access for users to observe and compare the feature (word)
distributions of topics, which could gives insight into how the topic
coherency varies across time. On the other hand, it reveals the multi-
variate time-varying features of topics, indicating when and in which
facets pathlines (documents) resemble each other.

4.2 FLDA Parameter Setting

In the typical LDA model, a set of parameters can be adjusted to tune
the results, including number of topics K, Dirichlete prior on the per-
document topic distributions α, Dirichlete prior on the per-topic word
distribution β, and number of iterations. In our FLDA model, prede-
fined feature vocabulary is also provided as parameters.

The topic number K is difficult to decide since it greatly depends
on the actual data. Too few topics will miss some important patterns,
while too many topics may produce redundant, meaningless or triv-
ial results. The Dirichlet prior α and β influence the topic distribution
per document and the word distribution per topic respectively. Smaller



(a) #topics = 10, α = 5.0, β = 0.1 (c) #topics = 15, α = 5.0, β = 0.1(b) #topics = 5, α = 5.0, β = 0.1

(d) #topics = 10, α = 1.0, β = 0.1 (f ) #topics = 10, α = 5.0, β = 0.01(e) #topics = 10, α = 10.0, β = 0.1

Fig. 6. Visualization of FLDA results of different parameter combinations under a fixed vocabulary of attribute features. #topics = 10, α = 5.0, β =

0.1 is chosen as default combination of values. From the results, the number of topics shows great influence over the results, while α and β show
small sensitivity.

values make the distribution more concentrated, and vice versa. How-
ever, as the α and β values change in our work, we do not observe
significant changes in the results. The number of iterations also affects
the quality of results, but we found that the output converges quickly
within a hundred iterations. In our case study, we fix this value to 100,
which is a balance between time efficiency and the quality of results.

In our experiments, we first investigate the FLDA output under dif-
ferent definitions of features. In Figure 5, we show the topic view
and MDS/Heatmap view of the results side by side. We can obeserve
some topics have significanly uneven temporal distribution of features
in configuration (a) and (b) from topic view, while in configuration (c),
the temporal distribution for topics are more even. By careful compar-
ison, we are able to find lot of differences between topics from the
previews.

We then tested combinations of other parameters under a fixed fea-
ture vocabulary which contains only the 5 scalar attributes of Isabel

data. We use #topics = 10, α = 5.0, and β = 0.1 as the default set-
ting. From the results shown in Figure 6, we can see that as the number
of topics increases, the temporal distribution of features has signifi-
cant changes. For some topics, the accumulated distribution of their
features becomes more concentrated on a small time range instead of
being evenly spread over the whole time span. From the Heatmap with
previews, we are able to observe that the topics are merging and split-
ting as K increases. However, for Dirichlet prior α, β, our test shows
that these two parameters have relatively small sensitivity in our FLDA
model.

5 CASE STUDY

As case studies, we tested our FLDA method on the Double Gyre Data
and the Hurricane Isabel data. In this section, we present the corre-
sponding results, and discuss the effectiveness of our system.

(b)

(c)(a)

{

vx(x, y) = −π sin(πx) cos(πy)
vy(x, y) = π cos(πx) sin(πy)
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Fig. 7. Visualization results for Double Gyre dataset (a). We extract 3 topics from Double Gyre dataset with feature sets of turning angles (b)
and spatial positions (c) respectively. For turning angles features, we use histograms of 256 bins to discretize angle values. For spatial positions
features, we parition the space domain into 8× 4 blocks.



5.1 Double Gyre Data

We use a simple dataset, Double Gyre, to demonstrate the basic usage
of FLDA. The vector field is given by

{

vx(x, y) = −π sin(πx) cos(πy)
vy(x, y) = π cos(πx) sin(πy)

over the region [0, 2] × [0, 1]. The flow field is composited by two
symmetric vortices which are shown in Figure 7(a). We choose this
data set in order to give an intuitive understanding of the relationship
between the extracted topics and observed flow properties. Although
this data is time-independent, there is no barrier to apply our method
to streamlines.

We construct feature vocabulary from facets of turning angle and
spatial blocks respectively. Three topics are extracted with α set to
0.01, β set to 0.001, and the number of iterations being 1000. Re-
sults are shown in Figure 7(b)(c). When we choose turning angles as
words, the streamlines are clustered by their distances to the center
of the corresponding vortex, to which the turning angle behaviors of
streamlines is strongly related. These extracted topics fit our observa-
tion. For feature sets of spatial blocks, we partition the domain into
8 × 4 grids. From the results, we can observe there are mainly two
topics of streamlines, which are basically constructed from the left
and right vortex, and another topic which is nearly duplicated in this
setting.

In this case, the relationship between topics and feature vocabular-
ies is easily obtained, since we only involve one facet in the feature
vocabulary and do not consider attribute information. When it comes
to complicated scenarios, more explorations are required to get the in-
sight into topics.

5.2 Isabel Data

Hurricane Isabel data comes from an atmospheric simulation. The
spatial resolution of this data set is 500 × 500 × 100, covering a
physical space of 2, 139 km × 2, 004 km × 19.8 km. The data has 48
timesteps corresponding to 48 hours. As for attributes, we consider the
wind speed vector filed (U, V, and W), and five scalar fields, including
wind speed magnitude (Sp), pressure (Pr), temperature (Tc), the water
vapour mixing ratio (Qv), and total cloud moisture mixing ratio (Qc),
which are suggested by domain experts as important attributes for the
hurricane analysis. In the preprocessing step, we extracted 5,768 path-
lines which are traced from time 0 with 4 samples per hour.

For this data, we only consider facets of the 5 scalar attributes men-
tioned above. We use the FLDA model to extract 15 topics from path-
lines with α set to 5.0, β set to 0.1, and the iteration count to100.
An overview of all topics is presented in Figure 8(a)(b), including the
MDS/heatmap view and the feature view. Among the 15 extracted
topics, there are three topics, the 9th, 12th, and 14th, which show some
interesting spatial behaviors as displayed in Figure 8(c)-(e). Topic (c)
contains pathlines advecting from the hurricane eye to the outside in
the low altitude region, while topic (d) contains pathlines that travel
from outside to inside in an anti-clockwise direction with a higher al-
titude. Pathlines in topic (e) are advecting at the periphery of the hur-
ricane, which also inhabits in the low altitude region. Figure 8(f)-(h)
shows the attribute view, and the time histogram of pressure (Pr) and
temperature (Tc) for each topic. Besides the geometric patterns, they
can also be treated as clusters from multivariate facet. We can observe
that pathlines in topic (c) have more similar multivariate behaviors in
the first half of the advection, while the similar phenomenon appear
in the last half of advection for topic (d). For pathlines in topic (e),
the similarity of attributes is roughly stable through all the advection
time. From the time histogram, explicit attribute changes of the topics
could be more clearly observed. Pathlines in topic (c) and (e) have
an increasing pressure and decreasing temperature in the advection
process, which indicates lower pressure and higher temperature in the
hurricane eye than the periphery. For pathlines in topic (d), the tem-
perature generally goes up when they move towards the center, but the
pressure always keep stable. It could be explained by their advection,
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Fig. 8. We extract 15 topics from Hurricane Isabel data by considering
the feature sets of wind speed magnitude (Sp), pressure (Pr), temper-
ature (Tc), the water vapour mixing ratio (Qv), and total cloud moisture
mixing ratio (Qc). The overview of topics are visualized in (a) heatmap
view and (b) topic view. The 9th, 12th, and 14th topic are selected for
further investigation. These three topics have very different spatial be-
haviors as shown in (c)-(e). The attribute view of each topic and time
histogram of Pr and Tc are shown in (f)-(h).



since the sample points in the hurricane eye have more similar proper-
ties, while those outside the hurricane have more diverging behaviors.

6 DISCUSSIONS

In this part, we compare our FLDA model to other methods from two
aspects: flow exploration and pathline clustering.

6.1 Comparison to Flow Analysis Methods

The FLDA model brings a novel perspective to explore flow filed
data. Previous flow exploration methods include texture-based and
geometry-based methods, parallel coordinates, projection methods,
interactive graph exploration, etc. Compared to these methods, our
method have two major differences. 1) FLDA model not only clusters
pathlines using the fuzzy assignment, but also produces meaningful
multi-facet topics by incorporating simple features. These topics re-
veal complex inherent flow behaviors, which may be difficult to dis-
cover without prior knowledge for detection and extraction. 2) It’s
easy for our approach to fuse features from various facets of the flow
field data by treating every pathline as bags of features. Moreover, the
feature components could be totally heterogeneous from very differ-
ent fields, which enables users to explore the data in a more flexible
way. While these complex flow behaviors are often difficult to define
without priori knowledge.

6.2 Comparison to Cluster Algorithms

We also conducted a comparison between K-Means clustering algo-
rithm and our flow LDA model on the Isabel data. The K-Means
algorithm calculates the distance matrix of pathlines using the accu-
mulation of sample-wise distances in the attribute space, which is the
same with LASP [17]. Since only the distance matrix instead of the
original high-dimensional data is available, we actually use a variation
of K-Means, named K-Medoids. Our method also uses all 5 attributes
to define the feature vocabulary. The cluster (topic) number is set to
5 for a simpler and intuitive comparison. The clustering results are
compared side by side in Figure 9. We can observe fairly close results
except the 2nd cluster (topic). These clusters have very similar spatial
behaviors and distributions in the projection space, which could prove
the effectiveness of our method as a clustering algorithm. However,
the FLDA model excels the K-Means in that it provides a fuzzy, rather
than binary description on the cluster distributions. In this way, it’s
also less sensitive to the value of K, since no samples are exclusive in
the clustering process. For the 2nd cluster (topic), because of determin-
istic assignment of K-Means, pathlines in this cluster are isolated from
other parts. While in FLDA model, the probabilistic assignment not
only relieves this problem, but reveals additional compensatory infor-
mation by providing another interesting topic. Besides the projected
results, users are also able to perceive when and in which attributes are
the pathlines more similar or more diverged in the attribute space from
the feature distribution view.

Apart from a better effect, there is a better time complexity of FLDA
model when a small number of feature sets is chosen to construct vo-
cabulary Vf . In K-Means algorithm, the pre-computation of distance
matrix costs O(D2T ) and one iteration costs O(D2), while one iter-
ation in LDA model costs O(KDM). M denotes the average size
of features in pathlines, which equals T times the number of features
chosen in our definition. In a common scenario, the number of fea-
tures in vocabulary and the number of topics is often a small number
compared to D, which makes FLDA model generally faster than the
K-Means algorithm.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel LDA-based flow analysis method,
Flow LDA (FLDA). We extend the traditional LDA model to flow field
scenario with a quite different definition of words. A prototype system
is developed to extract flow features, as well as to explain the seman-
tics of topics. Our case studies demonstrate the effectiveness of the
FLDA model.

In the future, we would like to develop our work in different ways.
In our experiments, the parameters in FLDA models show different

(a) (b)
Fig. 9. Cluster results comparison between K-Means algorithm (a) and
FLDA model (b). The number of clusters (topics), K, is set to 5.

sensitivity behaviors from the topic model. The effects of parameters
to LDA results can be studied thoroughly to provide an exploration
guidance. The FLDA can also be further introduced into ensemble
scenario to give a comparative analysis and visualization to ensemble
simulation data.
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